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Abstract The Kuhn–Tucker type necessary optimality conditions are given for the
problem of minimizing the sum of a differentiable function and a locally Lipschitzian
function subject to a set of differentiable nonlinear inequalities on a convex subset C
of R

n, under the condition of a generalized Kuhn–Tucker constraint qualification or
a generalized Arrow–Hurwicz–Uzawa constraint qualification. The case when the set
C is open is shown to be a special one of our results, which helps us to improve some
of the existing results in the literature. To finish we consider several test problems.

Keywords Generalized gradient · Constraint qualifications · Lipschitzian problems

1 Introduction

In this paper, we consider the following Lipschitzian mathematical programming
problem:

(P) min f (x) + φ(x), s.t. g(x) ≤ 0, x ∈ C, (1)

where f , φ : R
n → R, g = (g1, g2, . . . , gm) : R

n → R
m, g, f are assumed to be differen-

tiable, φ is locally Lipschitzian continuous on C (see the definition in (1)) and C is a
convex subset of R

n.
In order to derive more important necessary optimality conditions, constraint quali-

fications are needed. There are six constraint qualifications in the book of Mangasarian
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(9), viz:

(CQ1) the Kuhn–Tucker constraint qualification at x̄;
(CQ2) the Arrow–Hurwicz–Uzawa constraint qualification at x̄;
(CQ3) the reverse convex constraint qualification at x̄;
(CQ4) the Slater constraint qualification on C;
(CQ5) the Karlin constraint qualification on C;
(CQ6) the strict constraint qualification on C;

where C is an open subset of R
n, x̄ ∈ C. Also, there is another constraint qualification

called calmness in Clarke (1). Readers are referred to [9, Chapt. 7] for the relation-
ships between (CQ1)–(CQ6). In view of the relationships, we need only to establish
the results under the Kuhn–Tucker constraint qualification and the Arrow–Hurwicz–
Uzawa constraint qualification. However, the Kuhn–Tucker constraint qualification
or the Arrow–Hurwicz–Uzawa constraint qualification doesn’t imply calmness con-
straint qualification, and calmness constraint qualification doesn’t imply the Kuhn–
Tucker constraint qualification or the Arrow–Hurwicz–Uzawa constraint qualification
either.

Example 1.1 This example illustrates that the Kuhn–Tucker constraint qualification
or the Arrow–Hurwicz–Uzawa constraint qualification doesn’t imply calmness con-
straint qualification. Let

(Q1) min f (x) = −x,
s.t. g1(x) = x + x3 ≤ 0,

g2(x) = −x2 ≤ 0,
x ∈ C = {x ∈ R : x ≤ 1/2}.

Obviously, the feasible set is S = {x ∈ R : x ≤ 0}, x̄ = 0 is an optimal solution of (Q1),
and ∇g1(x̄) = 1, ∇g2(x̄) = 0.

1. Suppose that d ∈ R, then the inequalities dT∇gi(x̄) ≤ 0, i = 1, 2 have the solution
{d ∈ R : d ≤ 0}. Define a differentiable function defined on [0, 1]:

e(t) = x̄ + λtd for some λ > 0.

We have e(0) = x̄ = 0, e(t) ⊆ S, and ė(0) = λd. Then (Q1) satisfy the Kuhn–
Tucker constraint qualification at x̄. Similarly, it is easy to verify that (Q1) satisfy
the Arrow–Hurwicz–Uzawa constraint qualification at x̄. We leave the details for
the readers.

2. For any integer k > 0, denote pk = (0, 1
k ), xk =

√
1
k . Then pk → (0, 0)T , xk → 0

as k → +∞, and xk ∈ (x̄ +
√

1
k B) ∩ {x ∈ C : x + x3 ≤ 0, −x2 + 1

k ≤ 0}(where B is
a unit circle in R). However,

f (xk) − f (x̄)

|pk| = −√
1/k

1
k

= −√
k → −∞ (k → ∞).

So (Q1) doesn’t satisfy the calmness constraint qualification at x̄.

Example 1.2 This example illustrates that calmness constraint qualification doesn’t
imply the Kuhn–Tucker constraint qualification or the Arrow–Hurwicz–Uzawa
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constraint qualification. Let

(Q2) min f (x1, x2) = −x1,
s.t. g(x1, x2) = x1/3

1 ≤ 0,
x ∈ R

2.

Obviously, x̄ = (0, 0)T is an optimal solution of (Q2), and f (x̄) = 0. Since g(x1, x2) is
not differentiable at x̄, (Q2) doesn’t satisfy the Kuhn–Tucker constraint qualification
at x̄ or the Arrow–Hurwicz–Uzawa constraint qualification at x̄. However, V(0) = 0,
V(p) = −p3,

lim inf
p→0

V(p) − V(0)

|p| = lim inf
p→0

−p3

|p| = 0 > −∞.

So (Q2) satisfy calmness constraint qualification at x̄.

The necessary optimality conditions for problem (P) can be obtained under calm-
ness constraint qualification [1, Chap. 6]. So in the present paper, it is of interest to find
more practical constraint qualifications under which a local minimizer x̄ of problem
(P) is a (generalized) Kuhn–Tucker point of the problem; i.e., there is λ̄ ∈ R

m+ such
that

0 ∈ ∇f (x̄) + ∂φ(x̄) + ∇g(x̄)λ̄ + NC(x̄),

g(x̄)λ̄ = 0,

where ∂ ,NC(x̄) denote the generalized gradient operator in the sense of Clarke (1)
and the normal cone to C at x̄, respectively, and

∇g(x̄) = (∇g1(x̄), . . . , ∇gm(x̄)) ∈ R
n×m.

A class of nondifferentiable problems, which has been studied extensively, is as
follows:

(P1) min f (x) + φ(x), s.t. g(x) ≤ 0, x ∈ C. (2)

Where C and g are as above and f , φ : R
n → R, f is assumed to be differentiable, and

φ is a proper convex function on R
n.

When φ(x) = (xTBx)1/2 and C = R
n, Mond (2) proposed the problem and got a

necessary optimality condition under a certain complicated constraint qualification.
Later, the problem was generalized by Aggarwal and Saxena (3) to fractional pro-
gramming, and then by Singh (4) and Lai et al. (5) to minimax fractional programming.
Corresponding necessary conditions were obtained under the constraint qualifications
of the same type as given in (2). Based on the necessary conditions, sufficient con-
ditions and Wolfe-type duality were considered in the above-mentioned papers. Of
course, if in problem proposed in Mond (2) both f and g are convex functions (not
necessarily differentiable), then a necessary and sufficient optimality conditions can
be obtained under the slater constraint qualification (see Schechter (6), for example).
Recently, Xu (7) obtained the Kuhn–Tucker type necessary optimality conditions for
problem (P1) under the conditions of a generalized Kuhn–Tucker constraint qualifi-
cation or a generalized Arrow–Hurwicz–Uzawa constraint qualification.

In order to improve the last situations we combine the arguments and then con-
sider the programming problem (P). Moreover, notice that (1) generalizes the last
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situations without increasing the operational cost since if φ = 0 is taken, the classical
differentiable programming is obtained; if f = 0, the Lipschitzian programming is
obtained; as in (8), a convex function is a locally Lipschitzian function on its effective
domain, consequently, (1) can be seen as a generalization of (2). And the results
obtained in (7) can also be generalized correspondingly.

The remainder of this paper is organized as follows. In Sect. 2, we present some
useful lemmas by which our main results can be proved easily. In Sect. 3, we establish
the main results: a necessary optimality condition for problem (P) (Theorem 3.1); and
a necessary optimality condition for a special case of problem (P) in which the convex
set C is given explicitly by a set of convex inequalities (Theorem 3.2). We propose in
Sect. 4 some theoretical results with the application of the main results in this paper
and show the case when the set C is open is a special one of our results.

2 Preliminaries

In order to derive the Kuhn–Tucker type necessary optimality conditions, we need
the following important lemmas:

Lemma 2.1 Let f be a locally Lipschitzian function on a convex set C and let x̄ ∈ C. If
for any x ∈ C, there is a ξx ∈ ∂f (x̄) such that 〈ξx, x − x̄〉 ≥ 0, then there is a ξ̄ ∈ ∂f (x̄)

such that

〈ξ̄ , x − x̄〉 ≥ 0 for all x ∈ C.

Proof By Proposition 2.1.2 in (1), we have

f ◦(x̄; v) = max{〈ξ , v〉 : ξ ∈ ∂f (x̄)} for all v ∈ R
n.

By Theorem 4.2.5 in (8), we know that f ◦(x̄; v) is a convex function of v. Hence by
the hypothesis of the lemma

min
y∈C

f ◦(x̄; y − x̄) = min
y∈C

max{〈ξ , y − x̄〉 : ξ ∈ ∂f (x̄)} = 0.

Without loss of generality, we can reduce the argument to the case where x̄ = 0,
f ◦(0; 0) = 0, and consequently

min
y∈C

f ◦(x̄; y − x̄) = f ◦(0; 0) = 0. (3)

Let us consider now the convex sets

C1 = {(v, µ) ∈ R
n+1|µ ≥ f ◦(0; v)}, (4)

C2 = {(v, µ) ∈ R
n+1|v ∈ C, µ ≤ 0}. (5)

According to Lemma 7.3 in (6), we have

riC1 = {(v, µ) ∈ R
n+1|µ > f ◦(0; v)},

riC2 = {(v, µ) ∈ R
n+1|v ∈ riC, µ < 0},

where riC denotes the relative interior of the convex set C(see the definition in (8)).
Since the minimum of f ◦(0; ·) is 0, it follows that (riC1) ∩ (riC2) = ∅. Hence C1 and
C2 can be separated properly by some hyperplane in R

n+1(Theorem 11.3 in (8)). The
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separating hyperplane cannot be vertical, for if it were its image under the projection
(x, µ) → x would be a hyperplane in R

n separating R
n and riC properly, and this is

impossible because (riC) ∩ R
n �= ∅. The separating hyperplane must therefore be the

graph of an affine function on R
n, in fact a linear function since C1 and C2 have the

origin of R
n+1 in common. Thus there is an ξ̄ ∈ R

n such that

µ ≥ 〈ξ̄ , v〉 for all (v, µ) ∈ C1, (6)

µ ≤ 〈ξ̄ , v〉 for all (v, µ) ∈ C2. (7)

By (3), we have

f ◦(0; v) ≤ f ◦(0; v) − f ◦(0; 0) for all v ∈ R
n

from (4), thus (v, f ◦(0; v) − f ◦(0; 0)) ∈ C1 for all v ∈ R
n. By (6), it follows that

f ◦(0; v) − f ◦(0; 0) ≥ 〈ξ̄ , v − 0〉 for all v ∈ R
n. (8)

Similarly, by (5), (v, 0) ∈ C2, for all v ∈ C. From (7) we obtain

0 ≤ 〈ξ̄ , v〉 for all v ∈ C. (9)

Combining (8) and (9), it follows that

ξ̄ ∈ ∂f (0), 〈ξ̄ , v〉 ≥ 0 for all v ∈ C

and the proof is complete. ��

Remarks The property described in Lemma 2.1 can be used to linearize the non-
smooth programming problem, just like the differentiability property of functions.

Lemma 2.2 Let C be a convex set and let x̄ ∈ C, then N{x̄}∪riC(x̄) = NC(x̄).

Proof First we have N{x̄}∪riC(x̄) ⊇ NC(x̄) by definition. If y ∈ N{x̄}∪riC(x̄), we have

yT(x − x̄) ≤ 0 for all x ∈ {x̄} ∪ riC.

If x̄ ∈ riC,

λx̄ + (1 − λ)z ∈ riC for all z ∈ C for all λ ∈ (0 , 1),

yT [λx̄ + (1 − λ)z] = (1 − λ)yT(z − x̄) ≤ 0.

If x̄ ∈ C \ (riC) ⊆ (clC) \ (riC), then we have

λx + (1 − λ)x̄ ∈ riC for all x ∈ (riC).

Hence

yT [λx + (1 − λ)x̄ − x̄] = λyT(x − x̄) ≤ 0.

Consequently y ∈ NC(x̄), N{x̄}∪riC(x̄) ⊆ NC(x̄). So N{x̄}∪riC(x̄) = NC(x̄). The proof is
completed. ��
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Lemma 2.3 (7) Let C be a nonempty convex set of R
n. Then, for any x◦ ∈ (clC)\ (riC),

one has

(riC − x◦) ∩ T(affC)\(riC)(x
◦) = ∅,

where T(affC)\(riC)(x◦) denotes the tangent cone to (affC)\(riC) at x◦ in the sense of
Clarke (1).

Lemma 2.4 (8) Let f be a proper convex function on R
n, and let S be an any bounded

closed subset of ri( domf ), then f is Lipschitzian on S.

3 Main results

For reader’s convenience, we write the problem defined in Sect. 1

(P) min f (x), s.t. g(x) ≤ 0, x ∈ C.

Denote

X = {x ∈ R
n|g(x) ≤ 0},

I = I(x̄) = {i|gi(x) = 0, i = 1, 2, . . . , m}.
Let gI be the row vector whose components are gi, i ∈ I and let ∇gI be the matrix
whose ith column is ∇gi for i ∈ I. Denote

Z(x̄) = {x ∈ R
n|∇gI(x̄)(x − x̄) ≤ 0}

with the convention that if I = ∅ then Z(x̄) = R
n.

Definition 3.1 (8) g is said to satisfy the generalized Kuhn–Tucker constraint qualifi-
cation at x̄ ∈ X ∩ C if for each x ∈ (riC) ∩ Z(x̄), there exists a differentiable function
α defined on [0 , 1] with range in R

n such that

α(0) = x̄, α(t) ∈ X ∩ (affC), t ∈ [0 , 1] (10)

and for some δ > 0

dα(0)

dt
= δ(x − x̄). (11)

Note that, in Definition 3.1, we use the condition α(t) ∈ X ∩ (affC) for t ∈ [0 , 1]
instead of the condition α(t) ∈ X ∩ C for t ∈ [0 , 1] given in (9). The former is weaker
than the latter in general; if C has a nonempty interior (not necessarily convex), then
affC = R

n and the former becomes α(t) ∈ X for t ∈ [0 , 1].
Definition 3.2 (8) g is said to satisfy the generalized Arrow–Hurwicz–Uzawa
constraint qualification at x̄ ∈ X ∩ C if

∇gW(x̄)T(x − x̄) < 0, ∇gV(x̄)T(x − x̄) ≤ 0 (12)

has a solution

x ∈ (affC), (13)
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where

V = {i : gi(x̄) = 0, gi is concave},

W = {i : gi(x̄) = 0, gi is not concave}.
We also note that, in Definition 3.2, if C has a nonempty interior, then the condition

that (12) has a solution x ∈ affC becomes the condition that (12) has a solution x ∈ R
n,

which coincides with the corresponding one in (9).

Theorem 3.1 Let x̄ solve problem (P), and let g satisfy

1. the generalized Kuhn–Tucker constraint qualification at x̄ in Definition 3.1, or

2. the generalized Arrow–Hurwicz–Uzawa constraint qualification at x̄ in Definition
3.2.
If (riC) ∩ Z(x̄) �= ∅, then there exist λ̄ ∈ R

m+ such that

0 ∈ ∇f (x̄) + ∂φ(x̄) + ∇g(x̄)λ̄ + Nc(x̄), (14)

g(x̄)λ̄ = 0. (15)

Proof

1. Take x∗ ∈ (riC) ∩ Z(x̄). First, as in Definition 3.1 we have

α(t) ∈ X ∩ (affC), t ∈ [0 , 1]. (16)

Next, we show that there exists a ε : 0 < ε < 1 such that

α(t) ∈ riC, t ∈ (0 , ε]. (17)

If x̄ ∈ (riC), there exists a ε̄ > 0 such that

(x̄ + ε̄K) ∩ (affC) ⊆ riC. (18)

Combining (16) and (18) we can conclude that (17) holds true. So, we suppose
that x̄ ∈ C\(riC) ⊆ (clC)\(riC). Suppose on the contrary that there exist {tk} with
tk > 0, tk → 0 such that α(tk) ∈ (affC)\(riC). Then, it follows from (11) that

1
tk

(α(tk) − α(0)) → δ(x∗ − x̄)

or

1
δtk

(α(tk) − α(0)) → δ(x∗ − x̄),

implying x∗ − x̄ ∈ T
(affC)\(riC)

(x̄). By Lemma 2.1 we have x∗ �∈ riC, which con-
tradicts with x∗ ∈ riC. The combination of (16) and (17) gives that there exists a
ε : 0 < ε < 1 such that

α(t) ∈ X ∩ C, t ∈ [0 , ε]. (19)

Since x̄ solves problem (P) and α(0) = x̄, it follows from (19) that t = 0 is a
solution of the following problem:

min
t∈[0 , ε] ω(t) = f (α(t)) + φ(α(t)). (20)



632 J Glob Optim (2007) 38:625–635

Then, by the corollary of Proposition 2.4.3 in (1), we have η ≥ 0 for some η ∈
∂ω(0), where ∂ω(0) is the generalized gradient of the function ω(t) at t = 0 in
the sense of Clarke (1). Using Proposition 2.3.3, Theorem 2.3.10 in (1) and (11)
to compute the generalized gradient of ω(t) at t = 0, we have that there exist
ξ = ξ(x̄, x∗) ∈ ∂φ(x̄) such that

∇f (x̄)T(x∗ − x̄) + ξT(x∗ − x̄) ≥ 0. (21)

Obviously both riC and Z(x̄) are both convex sets, then (riC) ∩ Z(x̄)is a convex
set. By Lemma 2.1 there exist ξ̄ ∈ ∂φ(x̄) such that

∇f (x̄)T(x∗ − x̄) + ξ̄T(x∗ − x̄) ≥ 0 for all x∗ ∈ (riC) ∩ Z(x̄). (22)

Since x∗ ∈ (riC) ∩ Z(x̄) is arbitrarily chosen,we also have

∇f (x̄)T(x − x̄) + ξ̄T(x − x̄) ≥ 0 for all x ∈ (riC) ∩ Z(x̄). (23)

Hence, the system

∇f (x̄)T(x − x̄) + ξ̄T(x − x̄) < 0, ∇gI(x̄)T(x − x̄) ≤ 0 (24)

has no solution x ∈ riC.
By (riC) ∩ Z(x̄) �= ∅ and alternative theorem, there exists a vector λ̄I ≥ 0 such
that

∇f (x̄)T(x − x̄) + ξ̄T(x − x̄) + (λ̄I)
T∇gI(x̄)T(x − x̄) ≥ 0, x ∈ riC.

Denote F(x) = ∇f (x̄)T(x − x̄) + ξ̄T(x − x̄) + (λ̄I)
T∇gI(x̄)T(x − x̄). Then F(x) has

a global minimum point x̄ on the convex set {x̄} ∪ riC, then by the corollary of
Proposition 2.4.3 in (1), we have

0 ∈ ∇f (x̄)ξ̄ + ∇gI(x̄)λ̄I + N{x̄}∪riC(x̄).

By Lemma 2.2 and ξ̄ ∈ ∂φ(x̄),

0 ∈ ∇f (x̄) + ∂φ(x̄) + ∇gI(x̄)λ̄I + NC(x̄).

If i �∈ I(x̄), take λ̄i = 0, then there exist λ̄ ∈ R
m+ such that (14) and (15) hold true.

2. Take x∗ ∈ (riC) ∩ Z(x̄). Choose some x̂ ∈ affC satisfying (12). Define

αs(t) = x̄ + t[(x∗ − x̄) + s(x̂ − x̄)], (25)

where s and t are scalars. Clearly, αs(0) = x̄.

αs(t) ⊆ affC for all t for all s. (26)

So x∗, x̄, x̂ belong to affC, and

dαs(0)

dt
= (x∗ − x̄) + s(x̂ − x̄). (27)

We are going to show that for any s > 0 there exists a ε1 = ε1(s) > 0 such that

αs(t) ∈ X, t ∈ [0 , ε1]. (28)

For each i ∈ V

gi(αs(t)) = gi(αs(t)) − gi(αs(0)) ≤ ∇gi(x̄)T [t(x∗ − x̄) + ts(x̂ − x̄)] ≤ 0.
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For each i ∈ W, since

dgi(αs(0))

dt
= ∇gi(x̄)T [(x∗ − x̄) + s(x̂ − x̄)] < 0.

We have

gi(αs(t)) < 0 for small t > 0. (29)

Finally, for each i ∈ {1, . . . , m} \ (W ∪ V), it is clear that (29) holds true since gi(x̄) < 0
and αs(t) is continuous with respect to t. Hence, (28) is true. The combination of (26)
and (28) gives

αs(t) ∈ X ∩ (affC), t ∈ [0 , ε1]. (30)

Similarly to the arguments in the first two paragraphs in the proof of (1), we have
that there exists a ε2 and ε3 such that

αs(t) ∈ riC, t ∈ (0 , ε2], s ∈ (0 , ε3]. (31)

Set ε4 = min(ε1, ε2). We have that, for any fixed s ∈ (0 , ε3],
αs(t) ∈ X ∩ C, t ∈ [0 , ε4]. (32)

Similarly to (21), there exist ξ = ξ(x∗, x̄, x̂, s) ∈ ∂φ(x̄) such that

∇f (x̄)T [(x∗ − x̄) + s(x̂ − x̄)] + ξT [(x∗ − x̄) + s(x̂ − x̄)] ≥ 0, s ∈ (0 , ε3] (33)

and then, by letting s → 0 in (33),

∇f (x̄)T(x∗ − x̄)ξT(x∗ − x̄) ≥ 0.

This is exactly inequality(21). The rest of the proof is similar, and the proof is com-
plete. ��

If, in problem (P), we have,

C = {x ∈ R
n : h(x) ≤ 0},

where h is a vector convex function from R
n to R

p, then it is easy to verify that

riC = intC = {x ∈ R
n : h(x) < 0},

provided that the inequality h(x) < 0 has a solution. If we keep in mind the remarks
right below Definitions 3.1 and 3.2, the following result is at hand, which may be
viewed as a necessary condition by using a mixed-type constraint qualification: the
Kuhn–Tucker constraint qualification plus the Slater constraint qualification, or the
Arrow–Hurwica–Uzawa constraint qualification plus the Slater constraint qualifica-
tion.

Theorem 3.2 Consider the following problem:

(P
′
) min f (x) + φ(x), s.t. g(x) ≤ 0, h(x) ≤ 0,

where f , φ, and g are as given in problem (P), h is a convex vector function from R
n

to R
p. Let x̄ solve problem (P

′
), and let g satisfy any of the following two constraint

qualifications:
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1. the Kuhn–Tucker constraint qualification in Definition 3.1 with condition (10)
being replaced by the condition α(t) ∈ X for t ∈ [0 , 1];

2. the Arrow–Hurwica–Uzawa constraint qualification in Definition 3.2 with condi-
tion (13) being replaced by the condition x ∈ R

n.

If

{x ∈ R
n : h(x) < 0} ∩ Z(x̄) �= ∅, (34)

then there exist λ̄ ∈ R
m+ , µ̄ ∈ R

p
+ such that

0 ∈ ∇f (x̄) + ∂φ(x̄) + ∇g(x̄)λ̄ + ∂h(x̄)µ̄,

g(x̄)λ̄ = 0, h(x̄)µ̄ = 0,

where

∂h(x̄) = (∂h1(x̄), . . . , ∂hp(x̄)).

Proof Apply Theorem 21.2 in (8) to (23) with the expression x ∈ (riC) ∩ Z(x̄) being
replaced by the corresponding inequalities, and use condition (34). The proof is com-
plete. ��

4 Special cases

Suppose now that the set C in problem (P) is open (not necessarily convex). Then
riC = intC, equation (riC) ∩ Z(x̄) �= ∅ is automatically satisfied and NC(x̄) = 0.
Choose an open ball C1 included in C with center x̄. Replacing C by C1 in prob-
lem (P) to get a new problem, denoted by (P2). We see that, via writing a theorem
for problem (P2) similarly to Theorem 3.1, the constraint qualification reduce to the
corresponding classical ones.

For problem (P1), replacing C by (riC)∪ x̄ to get a new problem denoted (P3), that
x̄ solves problem (P1) implies it solves problem (P3). By Lemma 2.4 f (x) + φ(x) is a
locally Lipschitzian function on (riC) ∪ x̄. If g satisfy the hypothesis of Theorem 3.1,
then there exist λ ∈ R

m+ such that

0 ∈ ∇f (x̄) + ∂φ(x) + ∇g(x̄)λ̄ + N(riC)∪x̄(x̄),

g(x̄)λ̄ = 0.

By Lemma 2.2 we have

0 ∈ ∇f (x̄) + ∂φ(x) + ∇g(x̄)λ̄ + NC(x̄),

g(x̄)λ̄ = 0.

Hence problem (P1) is a special case of problem (P).
Suppose now C = R

n in problem (P), we get a new programming denoted (P4). It
is easy to check that the problem proposed in (2) is a special case of problem (P4).
The constraint qualifications in this paper obviously are the extension of the classical
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Kuhn–Tucker constraint qualification and Arrow–Hurwicz–Uzawa constraint quali-
fication to nondifferentiable programming, which is more practical and simpler than
the constraint qualification in (2,4).

Now we point out that Theorem 3.1 applies in order to derive the necessary condi-
tions for the fractional programming as follows:

(P5) min
f1(x) + φ1(x)

f2(x) + φ2(x)
, s.t. g(x) ≤ 0, x ∈ C,

where g, C are as (P), f1(x), f2(x) are assumed differentiable, φ1(x), φ2(x) are Lips-
chitzian functions on R

n, and for all x ∈ C, f2(x) + φ2(x) > 0. It is easy to see that
f1(x)+φ1(x)

f2(x)+φ2(x)
is locally Lipschitzian on C. If x̄ solves (P5) and g satisfy the hypothesis of

Theorem 3.1, denote ϑ(x̄) = (f1(x̄) + φ1(x̄))/(f2(x̄) + φ2(x̄)), then there exist λ̄ ∈ R
m+

such that

0 ∈ ∇f1(x̄) + ∂φ1(x) − ϑ(x̄)[∇f2(x̄) + ∂φ2(x)] + ∇g(x̄)λ̄ + NC(x̄),

g(x̄)λ̄ = 0,

which include corresponding necessary conditions in (4).
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